sinx + cos x / cos x - (sin x - cos x)/ sinx = secxcscx RΓΊtgọn cΓ‘c biểu thα»©c sau : a) (1- sin^2 x) cot^2 x + 1- cot^2 x b) ( tan x + cot x ) ^2 - ( tan x - cot x ) ^2 c) O L M. Học bΓ i; Hỏi Δ‘Γ‘p; Kiểm tra; BΓ i viαΊΏt Cuα»™c thi Tin tα»©c. Trợ giΓΊp ĐĂNG NHαΊ¬P ĐĂNG KÝ Đăng nhαΊ­p Đăng kΓ½ Thefourth order Taylor expansions for sin (x) and cos (x) around 0 are: sin (x) = x - x^3/6 + x^5/120 cos (x) = 1 - x^2/2 + x^4/24 The fourth order Taylor expansion for sin (x)cos (x) around 0 is: sin (x)cos (x) = x - x^3/3 + x^5/40 write down your python script to answer the question from math import sin, cos def sin_cos_series (x, n Fast Money. ο»ΏTrigonometry Examples Popular Problems Trigonometry Simplify sinx-cosxsinx+cosx Step 1Apply the distributive 2Multiply .Tap for more steps...Step to the power of .Step to the power of .Step the power rule to combine and . Misc 17 - Chapter 12 Class 11 Limits and Derivatives Last updated at May 29, 2023 by Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class Transcript Misc 17 Find the derivative of the following functions it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers sin⁑〖x + cos⁑x γ€—/sin⁑〖x βˆ’ cos⁑x γ€— Let f x = sin⁑〖x + cos⁑x γ€—/sin⁑〖x βˆ’ cos⁑x γ€— Let u = sin x + cos x & v = sin x – cos x ∴ fx = 𝑒/𝑣 So, f’x = 𝑒/𝑣^β€² Using quotient rule f’x = 𝑒^β€² 𝑣 βˆ’γ€– 𝑣〗^β€² 𝑒/𝑣^2 Finding u’ & v’ u = sin x + cos x u’ = sin x + cos x’ = sin x’ + cos x’ = cos x – sin x v = sin x – cos x v’= sin x – cos x’ = sin x’ – cos x’ = cos x – – sin x = cos x + sin x Derivative of sin x = cos x Derivative of cos x = – sin x Now, f’x = 𝑒/𝑣^β€² = 𝑒^β€² 𝑣 βˆ’γ€– 𝑣〗^β€² 𝑒/𝑣^2 = cos⁑〖π‘₯ βˆ’γ€– sin〗⁑〖π‘₯ sin⁑〖π‘₯ βˆ’γ€– cos〗⁑〖π‘₯ βˆ’ cos⁑〖π‘₯ +γ€– sin〗⁑〖π‘₯ sin⁑〖π‘₯ +γ€– cos〗⁑〖π‘₯γ€— γ€— γ€— γ€— γ€— γ€— γ€— γ€—/γ€–sin⁑〖x βˆ’co𝑠 π‘₯γ€—γ€—^2 = βˆ’sin⁑〖π‘₯ βˆ’γ€– cos〗⁑〖π‘₯ sin⁑〖π‘₯ βˆ’γ€– cos〗⁑〖π‘₯ βˆ’ sin⁑〖π‘₯ + cos⁑〖π‘₯ sin⁑〖π‘₯ +γ€– cos〗⁑〖π‘₯γ€— γ€— γ€— γ€— γ€— γ€— γ€— γ€—/γ€–sin⁑〖x βˆ’ co𝑠 π‘₯γ€—γ€—^2 = γ€–βˆ’sin⁑〖x βˆ’ co𝑠 π‘₯γ€—γ€—^2 βˆ’ γ€–sin⁑〖x + co𝑠 π‘₯γ€—γ€—^2/γ€–sin⁑〖x βˆ’ co𝑠 π‘₯γ€—γ€—^2 Using a + b2 = a2 + b2 + 2ab a – b2 = a2 + b2 – 2ab = βˆ’ [sin2⁑〖π‘₯ +γ€– cos2〗⁑〖π‘₯ βˆ’ 2 sin⁑〖π‘₯ γ€– cos〗⁑〖π‘₯ + 𝑠𝑖𝑛2π‘₯ + π‘π‘œπ‘ 2π‘₯ + 2𝑠𝑖𝑛π‘₯ cos⁑〖π‘₯]γ€— γ€— γ€— γ€— γ€—/γ€–sin⁑〖x βˆ’ co𝑠 π‘₯γ€—γ€—^2 = βˆ’ 2𝑠𝑖𝑛2π‘₯ + 2π‘π‘œπ‘ 2π‘₯ βˆ’ 0/γ€–sin⁑〖x βˆ’ co𝑠 π‘₯γ€—γ€—^2 = βˆ’2 π’”π’Šπ’πŸπ’™ + π’„π’π’”πŸπ’™/γ€–sin⁑〖x βˆ’ co𝑠 π‘₯γ€—γ€—^2 = βˆ’2 𝟏/γ€–sin⁑〖x βˆ’ co𝑠 π‘₯γ€—γ€—^2 = βˆ’πŸ /γ€–π’”π’Šπ’β‘γ€–π± βˆ’ 𝒄𝒐𝒔 𝒙〗〗^𝟐 Using sin 2 x + cos 2 x = 1 \bold{\mathrm{Basic}} \bold{\alpha\beta\gamma} \bold{\mathrm{AB\Gamma}} \bold{\sin\cos} \bold{\ge\div\rightarrow} \bold{\overline{x}\space\mathbb{C}\forall} \bold{\sum\space\int\space\product} \bold{\begin{pmatrix}\square&\square\\\square&\square\end{pmatrix}} \bold{H_{2}O} \square^{2} x^{\square} \sqrt{\square} \nthroot[\msquare]{\square} \frac{\msquare}{\msquare} \log_{\msquare} \pi \theta \infty \int \frac{d}{dx} \ge \le \cdot \div x^{\circ} \square \square f\\circ\g fx \ln e^{\square} \left\square\right^{'} \frac{\partial}{\partial x} \int_{\msquare}^{\msquare} \lim \sum \sin \cos \tan \cot \csc \sec \alpha \beta \gamma \delta \zeta \eta \theta \iota \kappa \lambda \mu \nu \xi \pi \rho \sigma \tau \upsilon \phi \chi \psi \omega A B \Gamma \Delta E Z H \Theta K \Lambda M N \Xi \Pi P \Sigma T \Upsilon \Phi X \Psi \Omega \sin \cos \tan \cot \sec \csc \sinh \cosh \tanh \coth \sech \arcsin \arccos \arctan \arccot \arcsec \arccsc \arcsinh \arccosh \arctanh \arccoth \arcsech \begin{cases}\square\\\square\end{cases} \begin{cases}\square\\\square\\\square\end{cases} = \ne \div \cdot \times \le \ge \square [\square] β–­\\longdivision{β–­} \times \twostack{β–­}{β–­} + \twostack{β–­}{β–­} - \twostack{β–­}{β–­} \square! x^{\circ} \rightarrow \lfloor\square\rfloor \lceil\square\rceil \overline{\square} \vec{\square} \in \forall \notin \exist \mathbb{R} \mathbb{C} \mathbb{N} \mathbb{Z} \emptyset \vee \wedge \neg \oplus \cap \cup \square^{c} \subset \subsete \superset \supersete \int \int\int \int\int\int \int_{\square}^{\square} \int_{\square}^{\square}\int_{\square}^{\square} \int_{\square}^{\square}\int_{\square}^{\square}\int_{\square}^{\square} \sum \prod \lim \lim _{x\to \infty } \lim _{x\to 0+} \lim _{x\to 0-} \frac{d}{dx} \frac{d^2}{dx^2} \left\square\right^{'} \left\square\right^{''} \frac{\partial}{\partial x} 2\times2 2\times3 3\times3 3\times2 4\times2 4\times3 4\times4 3\times4 2\times4 5\times5 1\times2 1\times3 1\times4 1\times5 1\times6 2\times1 3\times1 4\times1 5\times1 6\times1 7\times1 \mathrm{Radians} \mathrm{Degrees} \square! % \mathrm{clear} \arcsin \sin \sqrt{\square} 7 8 9 \div \arccos \cos \ln 4 5 6 \times \arctan \tan \log 1 2 3 - \pi e x^{\square} 0 . \bold{=} + Subscribe to verify your answer Subscribe Sign in to save notes Sign in Show Steps Number Line Examples simplify\\frac{\sin^4x-\cos^4x}{\sin^2x-\cos^2x} simplify\\frac{\secx\sin^2x}{1+\secx} simplify\\sin^2x-\cos^2x\sin^2x simplify\\tan^4x+2\tan^2x+1 simplify\\tan^2x\cos^2x+\cot^2x\sin^2x Show More Description Simplify trigonometric expressions to their simplest form step-by-step trigonometric-simplification-calculator en Related Symbolab blog posts High School Math Solutions – Trigonometry Calculator, Trig Simplification Trig simplification can be a little tricky. You are given a statement and must simplify it to its simplest form.... Read More Enter a problem Save to Notebook! Sign in

sin x cos x sin x